An exactly solvable periodic Schrodinger operator

This article has been downloaded from IOPscience. Please scroll down to see the full text article. 1985 J. Phys. A: Math. Gen. 18 L503
(http://iopscience.iop.org/0305-4470/18/9/003)

View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 129.252.86.83
The article was downloaded on 31/05/2010 at 17:07

Please note that terms and conditions apply.

LETTER TO THE EDITOR

An exactly solvable periodic Schrödinger operator

F Gesztesy ${ }^{\dagger}$, C Macdeo \ddagger and L Streit \ddagger
† Institut für Theoretische Physik, Universität Graz, A-8010 Graz, Austria
\ddagger Fakultät für Physik, Universität Bielefeld, D-4800 Bielefeld 1, West Germany

Received 15 March 1985

Abstract

We explicitly determine the band spectrum of a periodically strongly singular Schrödinger operator in $L^{2}(\mathbb{R})$ associated with the differential expression $-\mathrm{d}^{2} / \mathrm{d} x^{2}+$ $\left(s^{2}-\frac{1}{4}\right) / \cos ^{2} x+\left(s^{\prime 2}-\frac{1}{4}\right) / \sin ^{2} x, x \in \mathbb{R} \backslash \frac{1}{2} \pi \mathbb{Z}, 0<s, s^{\prime}<1$. The corresponding density of states is calculated analytically.

In this letter we are concerned with an explicit determination of the spectrum of a periodically strongly singular Schrödinger operator associated with the differential expression

$$
\begin{equation*}
\tau=-\frac{\mathrm{d}^{2}}{\mathrm{~d} x^{2}}+\frac{s^{2}-\frac{1}{4}}{\cos ^{2} x}+\frac{s^{\prime 2}-\frac{1}{4}}{\sin ^{2} x}, \quad x \in \mathbb{R} \backslash \frac{1}{2} \pi \mathbb{Z}, s, s^{\prime}>0 . \tag{1}
\end{equation*}
$$

In order to relate τ with a self-adjoint operator in $L^{2}(\mathbb{R})$ we introduce the minimal operator \dot{T} in $L^{2}(\mathbb{R})$,
$\mathscr{D}(\dot{T})=\left\{f \in L^{2}(\mathbb{R}) \mid f, f^{\prime} \in A C_{\mathrm{loc}}(\mathbb{R}) ; \operatorname{supp} f \subset \mathbb{R} \backslash \frac{1}{2} \pi \mathbb{Z}\right.$ compact; $\left.\tau f \in L^{2}(\mathbb{R})\right\}$,
$(\dot{T} f)(x)=(\tau f)(x), \quad x \in \mathbb{R} \backslash \frac{1}{2} \pi \mathbb{Z}$
where $A C_{\text {loc }}(Y)$ denotes the set of locally absolutely continuous functions on Y. By inspection, the closure T of \dot{T} is symmetric and has infinite deficiency indices if $0<s<1$ or $0<s^{\prime}<1$ and we are particularly interested in self-adjoint extensions of T. If $s \geqslant 1$ and $s^{\prime} \geqslant 1$ then T is self-adjoint (cf Gesztesy and Kirsch 1984, from now on referred to as GK). In the following it is also necessary to consider restrictions \dot{T}_{j}, T_{j} of \dot{T}, T to a periodicity interval $I_{J} \equiv(j \pi-\pi / 2, j \pi) \cup(j \pi, j \pi+\pi / 2)$. Due to the singularity structure of τ near points in $\frac{1}{2} \pi \mathbb{Z}$ we introduce the boundary values

$$
\begin{align*}
& f_{(j \pi+\pi / 2)_{ \pm}}=\mp \lim _{x \rightarrow(j \pi+\pi / 2)_{ \pm}}\left\{f^{\prime}(x)|x-(j \pi+\pi / 2)|^{s+1 / 2} \mp\left(s+\frac{1}{2}\right) f(x)|x-(j \pi+\pi / 2)|^{s-1 / 2}\right\} \\
& f_{(j \pi+\pi / 2)_{ \pm}}^{\prime}=\lim _{x \rightarrow(j \pi+\pi / 2)_{ \pm}}\left\{f^{\prime}(x)|x-(j \pi+\pi / 2)|^{1 / 2-s} \mp\left(\frac{1}{2}-s\right) f(x)|x-(j \pi+\pi / 2)|^{-1 / 2-s}\right\} \\
& f_{(j \pi-\pi / 2)_{ \pm}}=\mp \lim _{x \rightarrow(j \pi-\pi / 2)_{ \pm}}\left\{f^{\prime}(x)|x-(j \pi-\pi / 2)|^{s+1 / 2} \mp\left(s+\frac{1}{2}\right) f(x)|x-(j \pi-\pi / 2)|^{s-1 / 2}\right\} \\
& f_{(j \pi-\pi / 2)_{ \pm}}^{\prime}=\lim _{x \rightarrow(j \pi-\pi / 2)_{ \pm}}\left\{f^{\prime}(x)|x-(j \pi-\pi / 2)|^{1 / 2-s} \mp\left(\frac{1}{2}-s\right) f(x)|x-(j \pi-\pi / 2)|^{-1 / 2-s}\right\} \tag{3}\\
& f_{(j \pi)_{ \pm}}=\mp \lim _{x \rightarrow(j \pi)_{ \pm}}\left\{f^{\prime}(x)|x-j \pi|^{s^{\prime}+1 / 2} \mp\left(s^{\prime}+\frac{1}{2}\right) f(x)|x-j \pi|^{s^{\prime}-1 / 2}\right\} \\
& f_{(j \pi)_{ \pm}}^{\prime}=\lim _{x \rightarrow(j \pi)_{ \pm}}\left\{f^{\prime}(x)|x-j \pi|^{1 / 2-s^{\prime}} \mp\left(\frac{1}{2}-s^{\prime}\right) f(x)|x-j \pi|^{-1 / 2-s^{\prime}}\right\}
\end{align*}
$$

where f is locally in $\mathscr{D}\left(T_{j}^{*}\right)$ near $\frac{1}{2} \pi \mathbb{Z}$ or $f \in \mathscr{D}\left(T^{*}\right)$ (we recall $\mathscr{D}\left(T^{*}\right)=$ $\left\{f \in L^{2}(\mathbb{R}) \mid f, f^{\prime} \in A C_{\text {loc }}\left(\mathbb{R} \backslash \frac{1}{2} \pi \mathbb{Z}\right) ; \tau f \in L^{2}(\mathbb{R})\right\}$ and similarly for $\mathscr{D}\left(T_{j}^{*}\right)$ in $\left.L^{2}\left(I_{j}\right)\right)$. Obviously $f_{(j \pi)_{ \pm}}=f\left((j \pi)_{ \pm}\right), f_{(j \pi)_{ \pm}}^{\prime}=f^{\prime}\left((j \pi)_{ \pm}\right)$if $s^{\prime}=\frac{1}{2}$ and analogously for $s=\frac{1}{2}$. We start with the following theorem.

Theorem 1. Assume $0<s, s^{\prime}<1$. Then the operators

$$
\begin{gather*}
\mathscr{D}\left(T_{j}^{\theta}\right)=\left\{f \in L^{2}\left(I_{j}\right) \mid f, f^{\prime} \in A C_{\mathrm{loc}}\left(I_{j}\right) ; f_{(j \pi-\pi / 2)_{+}}=\mathrm{e}^{\mathrm{i} \theta} f_{(j \pi+\pi / 2)_{-},},\right. \\
f_{(j \pi-\pi / 2)_{+}}^{\prime}=\mathrm{e}^{\mathrm{i} \theta} f_{(j \pi+\pi / 2)_{-}}^{\prime}, f_{(j \pi)_{-}}=f_{(j \pi)_{+},}, \tag{4}\\
\left.f_{(j \pi)_{-}}^{\prime}=f_{(j \pi)_{+} ;}^{\prime} ; \tau f \in L^{2}\left(I_{j}\right)\right\}, \\
\left(T_{j}^{\theta} f\right)(x)=(\tau f)(x), x \in I_{j}, 0 \leqslant \theta<2 \pi
\end{gather*}
$$

are self-adjoint extensions of T_{j} in $L^{2}\left(I_{j}\right)$. The spectra of these operators are purely discrete and given by

$$
\sigma\left(T_{j}^{\theta}\right)= \begin{cases}\left\{\pi^{-1}\left[\cos ^{-1}\left(\sin (\pi s) \sin \left(\pi s^{\prime}\right) \cos \theta-\cos (\pi s) \cos \left(\pi s^{\prime}\right)\right)\right]+2 n\right\}^{2}, & \theta \in(0, \pi), \tag{5}\\ {\left[1 \mp\left(s+s^{\prime}\right)+2 n\right]^{2},} & \theta=0, \\ {\left[1 \mp\left(s-s^{\prime}\right)+2 n\right]^{2},} & \theta=\pi, \quad n=0,1,2, \ldots,\end{cases}
$$

$\sigma\left(T_{j}^{2 \pi-\theta}\right) \sigma\left(T_{j}^{\theta}\right), \theta \in[0, \pi]$.
Proof. Since the first part results from the general treatment in GK we only need to prove (5) and (6). By inspection the general solution ψ of the equation

$$
\begin{equation*}
(\tau \psi)(k, x)=k^{2} \psi(k, x), k^{2} \in \mathbb{R}, \operatorname{Im} k \geqslant 0, x \in I_{j} \tag{7}
\end{equation*}
$$

is

$$
\begin{gather*}
\psi(k, x)=\left\{\begin{array}{l}
c_{1}^{+} \psi_{1}(k, x)+c_{2}^{+} \psi_{2}(k, x), x \in(j \pi, j \pi+\pi / 2) \\
c_{1}^{-} \psi_{1}(k, x)+c_{2}^{-} \psi_{2}(k, x), x \in(j \pi-\pi / 2, j \pi),
\end{array}\right. \tag{8}\\
\psi_{1}(k, x)=\left(\sin ^{2} x\right)^{1 / 4-s^{\prime} / 2}\left(\cos ^{2} x\right)^{1 / 4-s / 2}{ }_{2} F_{1}\left(a ; b ; c ; \sin ^{2} x\right), \\
\psi_{2}(k, x)=\left(\sin ^{2} x\right)^{1 / 4+s^{\prime} / 2}\left(\cos ^{2} x\right)^{1 / 4-s / 2}{ }_{2} F_{1}\left(a-c+1 ; b-c+1 ; 2-c ; \sin ^{2} x\right) \tag{9}
\end{gather*}
$$

where ${ }_{2} F_{1}(\alpha ; \beta ; \gamma ; z)$ denotes the hypergeometric function (Abramowitz and Stegun 1972) and

$$
\begin{equation*}
a=\frac{1}{2}\left(k-s-s^{\prime}+1\right), \quad b=\frac{1}{2}\left(-k-s-s^{\prime}+1\right), \quad c=1-s^{\prime} . \tag{10}
\end{equation*}
$$

Analytic continuation $\sin ^{2} x \rightarrow \cos ^{2} x$ reads (Abramowitz and Stegun 1972)

$$
\begin{align*}
& \psi_{1}(k, x)=E\left(\sin ^{2} x\right)^{1 / 4-s^{\prime} / 2}\left(\cos ^{2} x\right)^{1 / 4-s / 2}{ }_{2} F_{1}\left(a ; b ; a+b+1-c ; \cos ^{2} x\right) \\
& \quad+F\left(\sin ^{2} x\right)^{1 / 4-s^{\prime} / 2}\left(\cos ^{2} x\right)^{1 / 4+s / 2}{ }_{2} F_{1}\left(c-b ; c-a ; c-a-b+1 ; \cos ^{2} x\right) \tag{11}\\
& \\
& \begin{aligned}
& \psi_{2}(k, x)=G\left(\sin ^{2} x\right)^{1 / 4+s^{\prime} / 2}\left(\cos ^{2} x\right)^{1 / 4-s / 2}{ }_{2} F_{1}\left(a ; b ; a+b+1-c ; \cos ^{2} x\right) \\
& \quad+H\left(\sin ^{2} x\right)^{1 / 4+s^{\prime} / 2}\left(\cos ^{2} x\right)^{1 / 4+s / 2}{ }_{2} F_{1}\left(c-b ; c-a ; c-a-b+1 ; \cos ^{2} x\right)
\end{aligned}
\end{align*}
$$

where

$$
E=\frac{\Gamma(s) \Gamma\left(1-s^{\prime}\right)}{\Gamma\left[\left(-k+s-s^{\prime}+1\right) / 2\right] \Gamma\left[\left(k+s-s^{\prime}+1\right) / 2\right]}
$$

$$
\begin{align*}
F & =\frac{\Gamma(-s) \Gamma\left(1-s^{\prime}\right)}{\Gamma\left[\left(k-s-s^{\prime}+1\right) / 2\right] \Gamma\left[\left(-k-s-s^{\prime}+1\right) / 2\right]} \tag{12}\\
G & =\frac{\Gamma(s) \Gamma\left(1+s^{\prime}\right)}{\Gamma\left[\left(-k+s+s^{\prime}+1\right) / 2\right] \Gamma\left[\left(k+s+s^{\prime}+1\right) / 2\right]} \\
H & =\frac{\Gamma(-s) \Gamma\left(1+s^{\prime}\right)}{\Gamma\left[\left(k-s+s^{\prime}+1\right) / 2\right] \Gamma\left[\left(-k-s+s^{\prime}+1\right) / 2\right]}
\end{align*}
$$

A lengthy although straightforward computation then shows

$$
\begin{align*}
& \psi_{(j \pi-\pi / 2)_{+}}=2 s\left(c_{1}^{-} E+c_{2}^{-} G\right), \quad \psi_{(j \pi-\pi / 2)_{+}^{\prime}}^{\prime}=2 s\left(c_{1}^{-} F+c_{2}^{-} H\right), \\
& \psi_{(j \pi+\pi / 2)-}=2 s\left(c_{1}^{+} E+c_{2}^{+} G\right), \quad \psi_{(j \pi+\pi / 2)_{-}}^{\prime}=-2 s\left(c_{1}^{+} F+c_{2}^{+} H\right) \text {, } \tag{13}\\
& \psi_{j \pi_{+}}=2 s^{\prime} c_{1}^{+}, \quad \psi_{j \pi_{+}}^{\prime}=2 s^{\prime} c_{2}^{+}, \quad \psi_{j \pi_{-}}=2 s^{\prime} c_{1}^{-}, \quad \psi_{j \pi_{-}}^{\prime}=-2 s^{\prime} c_{2}^{-} .
\end{align*}
$$

Imposing the boundary conditions in (4) finally yields

$$
\begin{align*}
& c_{1}^{+}=c_{1}^{-}, \\
& c_{1}^{-} E+c_{2}^{+} G=-c_{2}^{-} \tag{14}\\
& \mathrm{e}^{\mathrm{i} \theta}\left(c_{1}^{+} E+c_{2}^{+} G\right), \quad c_{1}^{-} F+c_{2}^{-} H=-\mathrm{e}^{\mathrm{i} \theta}\left(c_{1}^{+} F+c_{2}^{+} H\right)
\end{align*}
$$

Employing (12) this is equivalent to (5). Formula (6) follows since T_{j}^{θ} and $T_{j}^{2 \pi-\theta}$, $\theta \in[0, \pi]$ are anti-unitarily equivalent (cf Reed and Simon 1978).

If $s>1$ (or $\left.s^{\prime}>1\right)$ then T_{j} automatically obeys a Dirichlet boundary condition near $j \pi \pm \pi / 2$ (or $j \pi$).

The machinery of direct integral decomposition for periodic Schrödinger operators then yields the theorem below.

Theorem 2. Let $0<s, s^{\prime}<1$. Then the operator $H_{s, s^{\prime}}$ in $L^{2}(\mathbb{R})$,

$$
\begin{gather*}
\mathscr{D}\left(H_{s, s}\right)=\left\{f \in L^{2}(\mathbb{R}) \mid f, f^{\prime} \in A C_{\mathrm{loc}}\left(\mathbb{R} \backslash \frac{1}{2} \pi \mathbb{Z}\right) ; f_{\left(y_{j}\right)-}=f_{\left(y_{j}\right)++},\right. \\
\left.f_{\left.(y,)_{-}\right)}^{\prime}=f_{\left(y_{j}\right)+,}^{\prime}, y_{j} \in \frac{1}{2} \pi \mathbb{Z} ; \tau f \in L^{2}(\mathbb{R})\right\} \tag{15}
\end{gather*}
$$

$\left(H_{s, s} f\right)(x)=(\tau f)(x), x \in \mathbb{P} \backslash \frac{1}{2} \pi \mathbb{Z}$
is self-adjoint and unitarily equivalent to the direct integral $\int_{[0,2 \pi)}^{\oplus} T^{\theta} \mathrm{d} \theta / 2 \pi$ where T^{θ} denotes the family of self-adjoint operators in $L^{2}((-\pi / 2, \pi / 2))$,

$$
\begin{align*}
\mathscr{D}\left(T^{\theta}\right)=\{g(\theta) & \in L^{2}((-\pi / 2, \pi / 2)) \mid g(\theta), g^{\prime}(\theta) \in A C_{\text {loc }}((-\pi / 2, \pi / 2) \backslash\{0\}) ; \\
& g(\theta)_{(-\pi / 2)_{+}}=\mathrm{e}^{\mathrm{i} \theta} g(\theta)_{(\pi / 2)_{-},} g^{\prime}(\theta)_{(-\pi / 2)_{+}}=\mathrm{e}^{\mathrm{i} \theta} g^{\prime}(\theta)_{(\pi / 2)_{-}}, \tag{16}\\
& \left.g(\theta)_{(0)_{+}}=g(\theta)_{(0)_{-}} ; \tau g(\theta) \in L^{2}((-\pi / 2, \pi / 2))\right\}, \\
& \left(T^{\theta} g(\theta)\right)(x)=(\tau g(\theta))(x), x \in(-\pi / 2, \pi / 2) \backslash\{0\}, 0 \leqslant \theta<2 \pi
\end{align*}
$$

(prime denotes differentiation with respect to \boldsymbol{x}). The operator $H_{s, s^{\prime}}$ has no eigenvalues and

$$
\begin{align*}
\sigma\left(H_{s, s^{\prime}}\right)=\bigcup_{n=0}^{\infty} & {\left[\left(2 n+1-s-s^{\prime}\right)^{2},\left(2 n+1+s-s^{\prime}\right)^{2}\right] } \\
& \cup \bigcup_{n=0}^{\infty}\left[\left(2 n+1-s+s^{\prime}\right)^{2},\left(2 n+1+s+s^{\prime}\right)^{2}\right] \tag{17}
\end{align*}
$$

if $0<s \leqslant s^{\prime}<1$ and $s+s^{\prime}<1$,

$$
\begin{gather*}
\sigma\left(H_{s, s^{\prime}}\right)=\left[\left(1-s-s^{\prime}\right)^{2},\left(1+s-s^{\prime}\right)^{2}\right] \cup \bigcup_{n=0}^{\infty}\left[\left(2 n+1-s+s^{\prime}\right)^{2},\left(2 n+3-s-s^{\prime}\right)^{2}\right] \tag{18}\\
\cup \bigcup_{n=0}^{\infty}\left[\left(2 n+1+s+s^{\prime}\right)^{2},\left(2 n+3+s-s^{\prime}\right)^{2}\right]
\end{gather*}
$$

if $0<s \leqslant s^{\prime}<1$ and $s+s^{\prime}>1$,

$$
\begin{equation*}
\sigma\left(H_{s, s^{\prime}}\right)=\left[0,\left(1-s-s^{\prime}\right)^{2}\right] \cup \bigcup_{n=0}^{\infty}\left[\left(2 n+1-s+s^{\prime}\right)^{2},\left(2 n+3+s-s^{\prime}\right)^{2}\right] \tag{19}
\end{equation*}
$$

if $0<s \leqslant s^{\prime}<1$ and $s+s^{\prime}=1$. If $0<s^{\prime} \leqslant s<1$ one simply exchanges s and s^{\prime} in (17)-(19).

Since one can follow the proof of theorem 4.3 in GK step by step we omit the details.
Remark 3. (a) The cases $s=\frac{1}{2}$ or $s^{\prime}=\frac{1}{2}$ have been discussed by Scarf (1958) (assuming the validity of Bloch's theorem). A rigorous proof of this case appeared in GK. The special case $0<s=s^{\prime}<1$ also subordinates to this treatment.
(b) For $s+s^{\prime} \neq 1$ all gaps occur since $E_{n}(0), E_{n}(\pi), n \in \mathbb{N}_{0}\left(E_{n}(\theta)\right.$ the eigenvalues of T_{j}^{θ} listed in (5)) are simple. For $s+s^{\prime}=1, s^{\prime} \neq \frac{1}{2}$ every second gap closes since $E_{0}(0)$, $E_{n}(\pi), n \in \mathbb{N}_{0}$ are simple but $E_{n}(0), n \in \mathbb{N}$ are twice degenerate. For $s=s^{\prime}=\frac{1}{2}$ all gaps close since $E_{0}(0)$ is simple but $E_{n}(0), n \in \mathbb{N}$ and $E_{n}(\pi), n \in \mathbb{N}_{0}$ are twice degenerate. In fact $\sigma\left(H_{1 / 2,1 / 2}\right)=[0, \infty)$ since $H_{1 / 2,1 / 2}=-\mathrm{d}^{2} / \mathrm{d} x^{2}$ on $H^{2,2}(\mathbb{R})$.
(c) If $s>1$ (or $s^{\prime}>1$) then $\sigma\left(H_{s, s^{\prime}}\right)$ is pure point with each eigenvalue of infinite multiplicity since there are Dirichlet boundary conditions at points ($2 j+1$) $\pi / 2, j \in \mathbb{Z}$ (or at $\pi \mathbb{Z}$).
(d) The reason why the above model can be treated analytically is connected with its complete integrability as a classical as well as quantum system as discussed e.g. in Calogero (1975) and Olshanetsky and Perelomov (1983). Next we note that the density of states $\mathrm{d} \rho_{s, s^{\prime}} / \mathrm{d} E$ of $H_{s, s^{\prime}}$ at a point E with $E_{n}(\theta)=E, n \in \mathbb{N}_{0}$ is given by (cf (5))

$$
\begin{align*}
& \mathrm{d} \rho_{s, s} / \mathrm{d} E=\pi^{-2} \mathrm{~d} \theta / \mathrm{d} E \\
&=\left\{\sin ^{2}(\pi s) \sin ^{2}\left(\pi s^{\prime}\right)-\left[\cos \left(\pi E^{1 / 2}\right)+\cos (\pi s) \cos \left(\pi s^{\prime}\right)\right]^{2}\right\}^{-1 / 2} \\
& \times(2 \pi)^{-1} E^{-1 / 2} \sin \left(\pi E^{1 / 2}\right), \quad E \in \stackrel{\circ}{\sigma}\left(H_{s, s^{\prime}}\right) \tag{20}
\end{align*}
$$

(\AA the interior of A). Obviously

$$
\begin{equation*}
\mathrm{d} \rho_{s, s^{\prime}} / \mathrm{d} E \underset{s, s^{\prime} \rightarrow 1 / 2}{ }(2 \pi)^{-1} E^{-1 / 2}, E \in \bigcap_{s, s^{\prime}} \dot{\circ}\left(H_{s, s^{\prime}}\right) \cap(0, \infty) \tag{21}
\end{equation*}
$$

where the RHS of (21) represents the (unperturbed) density of states of $H_{1,2,1 / 2}=$ $-\mathrm{d}^{2} / \mathrm{d} x^{2}$. We finally observe that $\mathrm{d} \rho_{s, s} / \mathrm{d} E$ exhibits the usual $\left|E-a_{n}\right|^{-1 / 2}$ singularities near the band edges $a_{n}, n \in \mathbb{N}_{0}$. As an example consider e.g. the case $0<s<\frac{1}{2}<s^{\prime}<1$, $s+s^{\prime}=1$ and $E \rightarrow 0_{+}$where

$$
\begin{gather*}
\mathrm{d} \rho_{s, s^{\prime}} / \mathrm{d} E \underset{E \rightarrow 0_{+}}{=}\left[1+\cos (\pi s) \cos \left(\pi s^{\prime}\right)\right]^{-1 / 2}(2 \pi)^{-1} E^{-1 / 2}+\mathrm{O}\left(E^{1 / 2}\right) \\
0<s<\frac{1}{2}<s^{\prime}<1, s+s^{\prime}=1 . \tag{22}
\end{gather*}
$$

We are indebted to Dr W Kirsch for several most stimulating discussions. One of us (CM) gratefully acknowledges financial support by Deutscher Akademischer Austauschdienst, DAAD.

References

Abramowitz M and Stegun I A 1972 Handbook of mathematical functions (New York: Dover)
Calogero F 1975 Lett. Nuovo Cimento 13 411-6
Gesztesy F and Kirsch W 1984 Preprint, One-dimensional Schrödinger operators with interactions singular on a discrete set ZiF Universität Bielefeld, FRG
Olshanetsky M A and Perelomov A M 1983 Phys. Rep. 94 313-404
Reed M and Simon B 1978 Methods of Modern Mathematical Physics IV: Analysis of Operators (New York: Academic)
Scarf F L 1958 Phys. Rev. 112 1137-40

