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LET’FER TO THE EDITOR 

An exactly solvable periodic Schrodinger operator 
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t Institut fur  Theoretische Physik, Universitat Graz, A-8010 Graz, Austria 
$ Fakultat fur  Physik, Universitat Bielefeld, D-4800 Bielefeld 1, West Germany 

Received 15 March 1985 

Abstract. We explicitly determine the band spectrum of a periodically strongly singular 
Schrodinger operator in L2(R) associated with the differential expression -d2/dx2 + 
(s2- i ) /cos2 ~ + ( s ’ ~ - ~ ) / s i n ’ x ,  x ~ R \ f v Z , O < s ,  s’< 1. Thecorrespondingdensityofstates 
is calculated analytically. 

In this letter we are concerned with an explicit determination of the spectrum of a 
periodically strongly singular Schrodinger operator associated with the differential 
expression 

In order to relate T with a self-adjoint operator in L2(R) we introduce the minimal 
operator T in L’(R), 

9( T )  = { f ~  L2(R)  

( T f ) ( x )  = ( T f ) ( X ) ,  

ACIo,(R); s u p p f c  R \ t r Z  compact; T ~ E  L2(R)}, 
(2) 

x E [W\;‘TFz 

where AC,,,( Y) denotes the set of locally absolutely continuous functions on Y. By 
inspection, the closure T of T is symmetric and has infinite deficiency indices if 
0 < s < 1 or 0 < s‘< 1 and we are particularly interested in self-adjoint extensions of 
T. If s 2 1 and s ‘ a  1 then T is self-adjoint (cf Gesztesy and Kirsch 1984, from now 
on referred to as GK). In the following it is also necessary to consider restrictions $, 

of 8 T to a periodicity interval I, = ( j x  - r / 2 ,  j x )  U (jr, j r +  r / 2 ) .  Due to the 
singularity structure of T near points in f r z  we introduce the boundary values 

A ~ ~ + ~ ~ ~ ) ,  = r lim ~ ~ ( x ) ~ ~ - ( J . r r + r / 2 ) ~ ~ + ’ ~ ~ ~ ( s + f ~ f ( x ) ~ x - ( j x + r / 2 ) I ~ - ’ ~ ~ ~  

f i j n + a 1 2 ) ,  = lim { f ( x ) l x - ( j n +  ~ / 2 ) 1 ’ / ~ - ~ F ( $ - s ) f ( x ) I x - ( j x +  n/2)l-1’2-s} 

f ( j r - a 1 2 ) ,  = T lim { f ’ ( x ) l x - ( j r -  r / 2 ) ~ s + ” 2 ~ ( s + ~ ) f ( x ) ~ x - ( j ~ -  ~ / 2 ) 1 ’ - ’ / ~ }  

x + ( j r + n / 2 ) ,  

x + ( j n + m / 2 ) ,  

x - ( j w - n / 2 ) *  
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where f is locally in 9 ( T T )  near 3 ~ 2  or f ~ 9 ( T * )  (we recall S ( T * ) =  
{ f ~  L ’ ( R ) l i f ’ ~  AC,, ,(R\~I~Z); T ~ E  L2(R)} and similarly for 9(Tj*) in L 2 ( l j ) ) .  
Obviously f(j,,), = ~ ( ( J T ) + ) ,  fljn,, =f’((Jn)*) if s ’ = i  and analogously for s =;. We 
start with the following theorem. 

are self-adjoint extensions of 7 in L2(Zj). The spectra of these operators are purely 
discrete and given by 

{T-’[cos-’(sin(Ts) sin(rs’) cos e-cos(Ts) COS(TS‘))]+~~)’ ,  

[ l  (s - s’) + 2nI2, e = T, n =0,  1 ,2 , .  . . , 

e €  (0, T), 
a( Tje) = [1?= (s+ s’)+2nI2, e = o ,  ( 5 )  

( 6 )  

i 
(T( ~jz“-~)a( T?), e E [o, TI. 

ProoJ: Since the first part results from the general treatment in GK we only need to 
prove ( 5 )  and (6). By inspection the general solution tc, of the equation 

(~tc,)(k, x)  = k2tc,(k, x), k ’ ~  R, Im k 3 0 ,  x E (7) 

is 

( 8 )  

(9) 

~ : t c , ~ ( r c , x ) + c : t c , ~ ( k , x ) , x ~ ( j ~ , J ~ + ~ / 2 )  
c;rLl(k, XI+ ~;tc ,~(k,  x), x E (ir - ~ / 2 , h ) ,  

* ( k ,  x)  = { 
tc,’(k, x) = (sin’ x)’””/’ (cos’ X ) ~ ~ “ ~ ~ ’ ~ F , ( ~ ;  b ;  c ;  sin’x), 

tc,’( k, x)  = (sin’ x)’”~‘/’ (cos‘ x)1/4-s~’2Fl(a - c +  1 ; b - c +  1 ; 2- c ;  sin’ x)  

where ,F,(a;  p ;  y ;  z) denotes the hypergeometric function (Abramowitz and Stegun 
1972) and 

a = i ( k  - s - s ’+  l ) ,  b =‘(-IC 2 - s - S ‘ +  l ) ,  c = 1 - s ‘ .  (10) 

Analytic continuation sin’ x + cos’ x reads (Abramowitz and Stegun 1972) 

tc,,(k, x) = E(sin2 x)”~’/’ (COS’ X ) ’ / ~ ” ~ ’ ~ F ~ (  U ; b ; U + b + 1 - c ; COS’ X) 

+ ~ ( ~ i ~ 2  x ) 1 / 4 - ~ ’ / z  x ) 1 / 4 + ~ / 2  , F l ( c - b ; c - a ;  c - a - b + l ; c o s  2 x), 
(11) tc,’( k, x)  = G(sin* x)’”’’/’ ( C O S ’ X ) ’ / ~ - ~ ~ ’ ~ F ~ ( U ;  b ;  a + b + l  -C;COS’X) 

+ ~ ( ~ i ~ z  x ) 1 / 4 + ~ ’ / 2  (cos’ x)”~+’/’ 2 F I ( c - b ; c - a ; c - a - b + l ; c o s ’ x )  

where 
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r ( - s ) r ( i  - s f )  

r ( s ) r ( i  + s') 

r ( - s ) r ( i  + s') 

F =  
T[(k - s - s'+ 1)/2]r[(-k- s - S I +  1)/2]' 

G =  
T[(-k+ S +  s'+ 1)/2]T[(k+ S +  s '+  1)/2]' 

H =  r[( k - s + S I  + 1)/2]T[( - k - s + S I  + 1)/2]' 

A lengthy although straightforward computation then shows 

L505 

(12) 

$ ( J T - W / 2 ) +  = 2s(c;E + 

*,T+ = 2s'c:, *;=+ = 2s1c:, 4JT- = 2s'c;, *;T- = -2sjc;. 

c: = c;, c : = - c 2 ,  

* [ , n -n /2 )+  = 2 s ( G F +  c ; w ,  

$(JT+T/2)_=2s(c:E + 'zG), ${Jn+T/2 ) -  = -2s(c:F+c:H), (13) 

Imposing the boundary conditions in (4) finally yields 
- 

(14) 
c;E +c;G=~'~(c:E+c:G),  c ; F + c ; H =  -e"(c:F+c:H). 

Employing (12) this is equivalent to ( 5 ) .  Formula (6) follows since T," and T:T-e, 
8 E [0, r] are anti-unitarily equivalent (cf Reed and Simon 1978). 

automatically obeys a Dirichlet boundary condition near 
jv rt v / 2  (or j v ) .  

If s > 1 (or S I >  1) then 

The machinery of direct integral decomposition for periodic Schrodinger operators 
then yields the theorem below. 

m 

u U [(2n + 1 - s+ s' )2,  (2n  + 1 + s +  S y ]  
n =O 
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i f O < s < s ' < l  and s + s ' < l ,  
00 

a(H,.,.) = [(l  - s - s y ,  (1 + s - s ' )2]u  U [ ( 2 n  + 1 - s + (2n + 3  - s - s'I21 
n =o 

X 

u U [ ( 2 n  + 1 + s + s ' ) 2 ,  ( 2 n  + 3 + s - s ' ) 2 ]  
n = O  

i f O < s S s ' < l  a n d s + s ' > l ,  
m 

(+(H,,,,)=[O, (1-s-s')']u U [ ( 2 n + l - - s + ~ ' ) ~ , ( 2 n + 3 + s - s ' ) ~ ]  (19) 
n = O  

if O < s s s ' < l  and s + s ' = l .  If O < s ' < s < l  one simply exchanges s and s'  in 
(17)-( 19). 

Since one can follow the proof of theorem 4.3 in GK step by step we omit the details. 

Remark 3. ( a )  The cases s = f or s' = f have been discussed by Scarf (1958) (assuming 
the validity of Bloch's theorem). A rigorous proof of this case appeared in GK. The 
special case 0 < s = s'  < 1 also subordinates to this treatment. 

( b )  For s + s' # 1 all gaps occur since E,  ( O ) ,  E,  ( T ) ,  n E No( E ,  (0 )  the eigenvalues 
of T," listed in (5)) are simple. For s + s ' =  1, s' # f every second gap closes since Eo(0),  
E,( n-), n E No are simple but E,(O), n EN are twice degenerate. For s = s ' =  f all gaps 
close since Eo(0) is simple but E,(O), n E N  and E,( T ) ,  n E No are twice degenerate. 
In fact a(H1/2,1/2) = [O, CO) since H1/2,1/2 = -d2/dx2 on H292(R). 

( c )  If s > 1 (or s '>  1) then a( H,,,.) is pure point with each eigenvalue of infinite 
multiplicity since there are Dirichlet boundary conditions at points ( 2 j  + l)n-/2, j E Z 
(or at n-Z). 

( d )  The reason why the above model can be treated analytically is connected with 
its complete integrability as a classical as well as quantum system as discussed e.g. in 
Calogero (1975) and Olshanetsky and Perelomov (1983). Next we note that the density 
of states dp, , . /dE of H,,,. at a point E with 

dp, , , /dE = Y2 d 0 l d E  

= E, n E No is given by (cf (5)) 

( A  the interior of A ) .  Obviously 

where the RHS of (21) represents the (unperturbed) density of states of Hl,2,112= 
-d2/dx2. We finally observe that dp,, . /dE exhibits the usual IE - singularities 
near the band edges a,, n E No. As an example consider e.g. the case 0 < s < < s'  < 1, 
s + s ' =  1 and E + O +  where 

dp,, . /dE = [l +COS(TS) c o s ( ~ s ' ) ] " ( 2 ~ ) - ' E - ~ / ~ + O ( E ' ~ ~ )  
E+O+ 

O < S < f < S ' < l ,  s + s ' =  1. 
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